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Abstract

This paper shows how the transcendental dynamic stability functions can be used to determine the
natural frequencies of a beam system carrying a rigid body. The dynamic stability functions used here
satisfy the partial differential equation governing the flexural motion of Euler–Bernoulli beams exactly. The
boundary and continuity conditions are expressed in a convenient matrix form by assembling the dynamic
stiffness coefficients. This yields a determinantal frequency equation.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

For several decades structural and civil engineers have been using transcendental static and
dynamic stiffness matrices, also called static and dynamic stability functions, for the
determination of buckling loads and natural frequencies (see for example Refs. [1–12]). In
vibration analysis, this method is convenient for determining the exact natural frequencies of
continuous systems. Its potential use in the analysis of a common mechanical system, namely a
beam carrying a rigid body, seems to have been largely overlooked by researchers. A recent
journal publication gives exact results for some of the natural frequencies of a two-part beam
system carrying a rigid body by solving the equation of motion subject to given boundary and
continuity conditions from first principles [13]. The purpose of this paper is to demonstrate how
see front matter r 2004 Elsevier Ltd. All rights reserved.
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such problems may be solved more conveniently using the transcendental dynamic stability
functions, which give the same, exact results.
Static stability functions [1,2] have been used extensively by civil engineers for calculating the

critical loads of frameworks. These functions give the forces and moments at the ends of skeletal
members due to unit displacements at the same or the other end. Similar functions for calculating
natural frequencies, based on the method outlined by Veletsos and Newmark [3], were published
in a table form by Armstrong [4]. Dynamic stability functions that included the effect of axial
force (geometric stiffness) were presented by Mohsin and Sadek [5]. An experimental study on the
vibration behaviour of axially loaded skeletal frames by the author while he was an undergraduate
student at the University of Manchester [6], gave results that were in agreement with the
theoretical results using the functions in [5]. This method was extended to solve a variety of
continuous systems which include tapered beams, Timoshenko beam columns and folded plates
[7–9] to name a few, by Williams and a number of other researchers. The method involves setting
up a dynamic stiffness matrix that takes into account the stiffness and mass distribution in a
structure. The coefficients of this matrix are transcendental functions of the frequency, and the
natural frequencies may be calculated by searching the roots of the determinantal equation. This
may be done by several trial and error search procedures, but to ensure that no modes are missed
in a given frequency range, the Wittrick–Williams algorithm [10,11] should be used. In a
comprehensive book entitled Dynamic stiffness and substructures [12], Leung has outlined several
very useful computational procedures for efficient and exact dynamic analysis of different types of
structures, using transcendental dynamic stiffness coefficients. The dynamic stiffness method is
generally efficient and reliable, and gives a better understanding of the structural behaviour.
Therefore, it is useful to derive the dynamic stiffness coefficients for Euler–Bernoulli beams
carrying a rigid body.
2. Derivations

Dynamic stability functions are stiffness coefficients that give the dynamic actions (forces or
moments) at the ends of a structural member (beam, bar, shaft, etc.) due to a prescribed unit
displacement (translation or rotation at one of the ends of the structural member) taking into
account the inertial effect of the member.
To illustrate the use of these functions in the vibration analysis of a beam system carrying a

rigid body, first a particular system that has been reported in a recent publication [13] will be
considered. Fig. 1 shows a system that has been used by the author as an example in his vibration
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lectures. Results for the special case of e1=e2 have been published by Kopmaz and Telli [13]. This
consists of two Euler–Bernoulli beams that are pinned at one end and rigidly connected to a rigid
body at the other end. The centroid of the rigid body is located at distances e1 and e2 from the tips
of the left and right beams. The body has a mass m0 and moment of inertia I0 about its centroid.
The beams on the left and right will be referred to as beam 1 and beam 2, respectively, and have
the following properties: Intensities of mass (mass per unit length) m1; m2; flexural rigidities
EI1; EI2; and lengths L1; L2: Non-dimensional frequency parameters for the beams l1 and l2 are
given by

l4i ¼
mio2L4

i

EI i

for i ¼ 1; 2: ð1Þ

Let the centre of mass be given a translation D and rotation f: This would result in translations
of Dþ e1f and D� e2f of the left and right side beams at the point of attachment. They would
both rotate by an angle f: By Newton’s third law of motion, the forces and moments acting on the
rigid body are equal and opposite to those on the beams (see Figs. 2a–c). These actions may be
related to the displacement and rotation using the dynamic stability functions. To do this, it is first
instructive to consider the effect of end displacements in a single beam unit.
Consider an Euler–Bernoulli beam of length L, flexural rigidity EI and mass per unit length m,

which is pinned at the left end and is given a rotation y at the other end (see Fig. 3a). The resulting
actions at its ends may be expressed in terms of a nominal elastic stiffness factor k ¼ EI=L and
dynamic stability functions (given in [4,5] and defined later) S00; Q00 and q00 as shown in Fig. 3a.
Similarly, the actions due to a translation (d) of the right end are expressed in terms of dynamic
stability functions, Q00; q00; T 00 and t00 as shown in Fig. 3b [4,5]. Using the principle of
superposition, the net actions due to the translation and rotation of the rigid body are given
as follows.
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The net force acting at the right end of Beam 1 is

F1 ¼
k1Q

00
1

L1

� �
fþ

k1T
00
1

L2
1

� �
ðDþ e1fÞ: ð2Þ

Similarly the force at the left end of Beam 2 is

F2 ¼ �
k2Q

00
2

L2

� �
fþ

k2T
00
2

L2
2

� �
ðD� e2fÞ: ð3Þ

The moments in Beams 1 and 2 are

M1 ¼ k1S
00
1

� �
fþ

k1Q
00
1

L1

� �
ðDþ e1fÞ ð4Þ

and

M2 ¼ ðk2S
00
2Þf�

k2Q
00
2

L2

� �
ðD� e2fÞ: ð5Þ

Consider the motion of the rigid body in Fig. 2b. Applying Newton’s second law of motion in
the translational and rotational sense gives the following equations:

F1 þ F2 ¼ �m0
€D ¼ o2m0D; ð6Þ

M1 þ M2 þ F1d1 � F2d2 ¼ �I0 €f ¼ o2I0f:

Noting that for small rotations, d1 ¼ e1 and d2 ¼ e2; the above equation may be rewritten as

M1 þ M2 þ F1e1 � F2e2 � o2I0f ¼ 0: ð7Þ

Substituting Eqs. (2)–(5) into Eqs.(6) and (7), and carrying out some simplifications including
non-dimensionalisation of the parameters, results in the following matrix equation:

½D�fdg ¼ f0g; ð8Þ

where the elements of the dynamic stiffness matrix [D] are given by

D1;1 ¼ g3T 00
1 þ cT 00

2 � ag3l41;

D1;2 ¼ D2;1 ¼ g3Q00
1 � cgQ00

2 þ g3Z1T
00
1 � cgZ2T

00
2;

D2;2 ¼ g3ðS00
1 þ 2Z1Q

00
1Þ þ cðg2S00

2 þ 2g2Z2Q
00
2Þ

þ ðg3T 00
1Z

2
1 þ cg2T 00

2Z
2
2Þ � g3bl41: ð9a2dÞ

Here,

g ¼
L2

L1
; c ¼

EI2

EI1
; a ¼

m0

m1L1
; b ¼

I0

m1L
3
1

;

Zi ¼
ei

L1
for i ¼ 1; 2: ð10a2eÞ
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The non-dimensional displacement vector fdg is defined by

fdg ¼
ðD=L1Þ

f

� �
: ð11Þ

The dynamic stiffness coefficients are [4]:

S00
i ¼

2li sinhðliÞ sinðliÞ

ðcoshðliÞ sinðliÞ � cosðliÞ sinhðliÞÞ
for i ¼ 1; 2; ð12aÞ

Q00
i ¼

l2i ðcoshðliÞ sinðliÞ þ cosðliÞ sinhðliÞÞ

ðcoshðliÞ sinðliÞ � cosðliÞ sinhðliÞÞ
for i ¼ 1; 2; ð12bÞ

T 00
i ¼

2l3i coshðliÞ cosðliÞ

ðcoshðliÞ sinðliÞ � cosðliÞ sinhðliÞÞ
for i ¼ 1; 2 ð12cÞ

and

l2 ¼ l1g

ffiffiffiffi
z
c

4

s
; where z ¼

m2

m1
: ð13a;bÞ

The natural frequency parameters are found by solving |D|=0. As expected, the solution of this
equation agrees with the results in [13] which can be generated using a computer program
available on the worldwide web [14].
The effect of partial lateral and rotational restraints may also be included in the above

formulation. For example, if the rigid body is partially restrained against lateral motion and
rotation by springs of stiffness k, and k0, respectively (see Fig. 4), then the body would be subject
to an additional restraining force Fr and a restraining moment Mr as shown in Fig. 5. Once again,
assuming that the flexural rotations are small, the distance between the spring force and the centre
of mass is given by

dr ¼ er: ð14Þ
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Applying Newton’s second law of motion gives Eqs. (15) and (16) which replace Eqs. (6) and (7)
for the structure with the unrestrained rigid body:

F1 þ F2 þ Fr ¼ �m0
€D ¼ o2m0D; ð15Þ

M1 þ M2 þ Mr þ F1e1 � F2e2 þ Frer ¼ �I0 €f ¼ o2I0f: ð16Þ

Note that it is assumed here that the lateral spring is located at distance er to the left of the
centre of the rigid body. The location of the rotational restraint has no effect on the moment.
The constitutive equations for the restraints are

Fr ¼ kðDþ erfÞ ð17aÞ

and

Mr ¼ k0fr: ð17bÞ

The stiffness parameters and the location of the lateral restraint may be expressed in terms of
non-dimensional parameters defined as follows:

r ¼ k0 EI1=L1; t ¼ k EI1=L3
1; � ¼ er=L1: ð18a2cÞ
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Substituting Eqs. (17) and (18) into Eqs. (15) and (16) yields, after some algebraic
manipulations, the following expressions for the elements of the dynamic stiffness matrix:

D1;1 ¼ g3T 00
1 þ cT 00

2 þ tg3 � ag3l41; ð19aÞ

D1;2 ¼ D2;1 ¼ g3Q00
1 � cgQ00

2 þ g3Z1T
00
1 � cgZ2T

00
2 þ t�g3; ð19b; cÞ

D2;2 ¼ g3 S00
1 þ 2Z1Q

00
1

� �
þ cg2 S00

2 þ 2Z2Q
00
2

� �
þ g3T 00

1Z
2
1 þ cg2T 00

2Z
2
2

� �
þ g2ðrþ t�2Þ � g3bl41: ð19dÞ

If one of the beams were clamped at the extreme end, instead of being simply supported, the
corresponding equations for the stiffness coefficients may be obtained by replacing S00; Q00; T 00

with S, Q and T, respectively. These functions are available in the literature [4–5].
Natural frequencies of other mechanical systems consisting of skeletal elements, rigid bodies

and partial support restraints may also be determined conveniently in this manner. With the use
of the W–W algorithm, the use of dynamic stability functions remains a convenient method for
natural frequencies of many common continuous systems.
3. Conclusions

A simple procedure using transcendental dynamic stability functions to determine the natural
frequencies of a beam system connected to a rigid body subject to elastic restraints has been
presented. This method alleviates the need to derive the solution to the equation of motion for
structural members for any given set of boundary or continuity conditions from first principles.
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